学术报告一
报告题目:Highly efficient quantum light sources based on quantum dots in photonic nanostructures
报告人:刘进 教授
主持人:辛洪宝 教授
时间:2019年06月03日下午15:00~16:00
地点:暨南大学纳米光子学研究院讲学厅(番禺校区恒大楼102室)
摘要:Solid-state quantum emitters, especially epitaxial quantum dots (QDs) with large optical oscillator strength, are a promising candidate for future on-chip quantum devices. However, the deterministic creation and eventual scalability of single QD devices greatly suffer from the random nature of the QD positions produced in their self-assembled growth. In this talk, I will present a new high-performance system for nanoscale location of QDs based on photoluminescence imaging. By further utilizing such a system, we’ve achieved deterministic couplings between single QDs and a variety of photonic nanostructures, which enables the realizations of quantum photonic devices with state-of-the-art performances, including ultra-bright single-photon/entangled pair sources, hybrid quantum photonic circuits and single-photon frequency converters.
报告人简介:Jin Liu is a professor of physics in Sun Yat-Sen University. He obtained his PhD degree in 2012 from Technical University of Denmark under the supervision of Prof. Peter Lodahl and Prof. Jesper Mork. Before moving back to China, he worked with Dr. Kartik Srinivasan at National Institute of Standards and Technology (NIST) to develop integrated quantum photonic circuits. His current research activities cover integrated quantum photonics and nanophotonics by utilizing molecular beam epitaxy, semiconductor nanofabrication and cryogenic optical characterizations.
学术报告二
报告题目:角控光镊法研究扭矩下的转录过程
报告人:马杰 教授
主持人:辛洪宝 教授
时间:2019年06月03日下午16:00~17:00
地点:暨南大学纳米光子学研究院讲学厅(番禺校区恒大楼102室)
摘要:转录过程中RNA聚合酶沿着DNA大沟槽前进,同时相对于DNA旋转。当RNA聚合酶和DNA受到限制不能自由旋转时,RNA聚合酶将在下游DNA积累正的扭矩,而在上游DNA积累负的扭矩。这些扭矩如何影响转录过程?多大的扭矩将使转录过程终止?RNA聚合酶产生扭矩的能力能否被调控?其背后的机制又是什么?利用独特的角控光镊/光学扳手技术,本报告中,我们将在单分子层面上对这些问题加以回答。
报告人简介:马杰,中山大学物理学院教授,其研究方向为生物光子学和单分子生物物理。曾在美国霍华德-休斯医学中心和康奈尔大学物理系从事博士后研究工作,期间主要利用角控光镊/光学扳手技术,研究DNA扭矩对转录过程的调控作用,曾首次测量出RNA聚合酶 (RNA polymerase) 所能产生的最大扭矩 (stall torque),近期的工作则进一步揭示了一种有关RNA聚合酶扭矩能力的调控机制。目前的研究主要集中在开发和利用多种光学技术手段(包括光镊、荧光和纳米光子学器件等工具),进而在单分子层面上,对重要的分子生物学过程(如转录、复制、DNA重组与修复等)展开高度精细的测量,揭示并深刻理解重要蛋白的工作原理以及其与核酸的相互作用机制。