• 概况 Overview
    概况 Overview
    纳米光子学研究院创建于2016年,2023年获批广东省纳米光学操控重点实验室。研究院和省重点实验室是具有重要影响力的高水平科研单位,也是暨南大学光学与光学工程学科重地和高层次人才聚集地。
    
    The Institute of Nanophotonics was established in 2016 while the Guangdong Provincial Key Laboratory ...
  • 队伍 The Team
    队伍 The Team
    纳米光子学研究院师资队伍包括:国家自然科学二等奖获得者,教育部创新团队带头人,教育部长江特聘教授,教育部青年长江学者,教育部新世纪优秀人才,国务院政府特殊津贴专家,国家百千万人才工程人选,国家杰出青年基金获得者 ...
    
    The institute is led by Professor Baojun Li, the Distinguished Cheung Kong Scholar Professor ...
  • 科研 Research
    科研 Research
    纳米光子学研究院突出“高精尖”的科研导向,瞄准国际学术前沿,开展原创性基础研究,设有“纳米操控光子学”、“纳米生物光子学”、“材料器件光子学”、“前沿交叉光子学”四个重要学科方向,拥有广东省纳米光学操控重点实验室。
    
    The institute focuses on the following four cutting-edge, fundamental & innovative fields of research ...
  • 招生 Graduates
    招生 Graduates
    欢迎具有物理、光学、光学工程、材料、生物、化学等相关专业基础、且有志于高水平纳米光子学研究的优秀学子报考暨南大学纳米光子学研究院,攻读硕士或博士学位。
    
    The institute welcomes new students to study for a master's / doctor's degree related to optics & optical engineering.
  • 招聘 Careers
    招聘 Careers
    研究院诚挚邀请海内外高层次人才及优秀青年学者加入,将提供具有国际竞争力的薪资待遇、住房补贴、科研经费等。
    
    The institute cordially invites high-level talents & outstanding young scholars to apply for open positions. Successful applicants will be offered internationally competitive salary, housing allowance, research funding, etc.
首页  学术报告
中科院物理所田学增教授学术报告

发布时间:2022-10-09

报告题目:Capturing 3D atomic structure with pm precision: An imaging method beyond crystallography

报告人:田学增  教授

主持人:娄在祝  教授

时间:2022年10月10日10:00~11:00

地点:暨南大学纳米光子学研究院讲学厅(番禺校区恒大楼102室)

 

报告摘要:Perfect crystals are rare in nature. Real materials often contain crystal defects and chemical order/disorder such as grain boundaries, dislocations, interfaces, surface reconstructions and point defects. Despite rapid development of quantitative material characterization methods, the structure-property relationship of advanced materials at the 3D atomic level remains a challenge. Here, we developed atomic electron tomography (AET) to localize the 3D atomic coordinates of materials with picometer precision. AET combines the most advanced aberration-corrected electron microscopy and our home-developed Fourier space iterative reconstruction algorithm, which is capable of determining the 3D atomic structure in materials without crystallinity. In this talk, I will firstly brief the principles of AET. Next, I will show several key advances achieved with AET, including atomic nucleation mechanism in metal, doping and  heterogeneity in 2D quantum materials, and our recent results on determining the 3D atomic structure of glass materials for the first time.

 

报告人简介:Xuezeng Tian joined the IOP,CAS as a Tenure-Track Professor in Oct, 2020. Before joining IOPCAS, Tian has been working as an electron microscopist at LBNL, ORNL and UCLA for 6 years  as a postdoctoral researcher. His expertise spans from experimental electron microscopy to 3D reconstruction algorithms and deep learning image processing technologies. In IOPCAS, Tian's research will focus on the development of new imaging methodologies based on electron microscopy and their application in materials physics. The team will be targeting several critical physical problems including atomic structure of glass materials, low dimensional quantum materials, functional oxides and heterogeneous catalysis. 

 

版权所有©暨南大学纳米光子学研究院
地址:广州市番禺区兴业大道东855号
电话:020-37336704
邮编: 511443